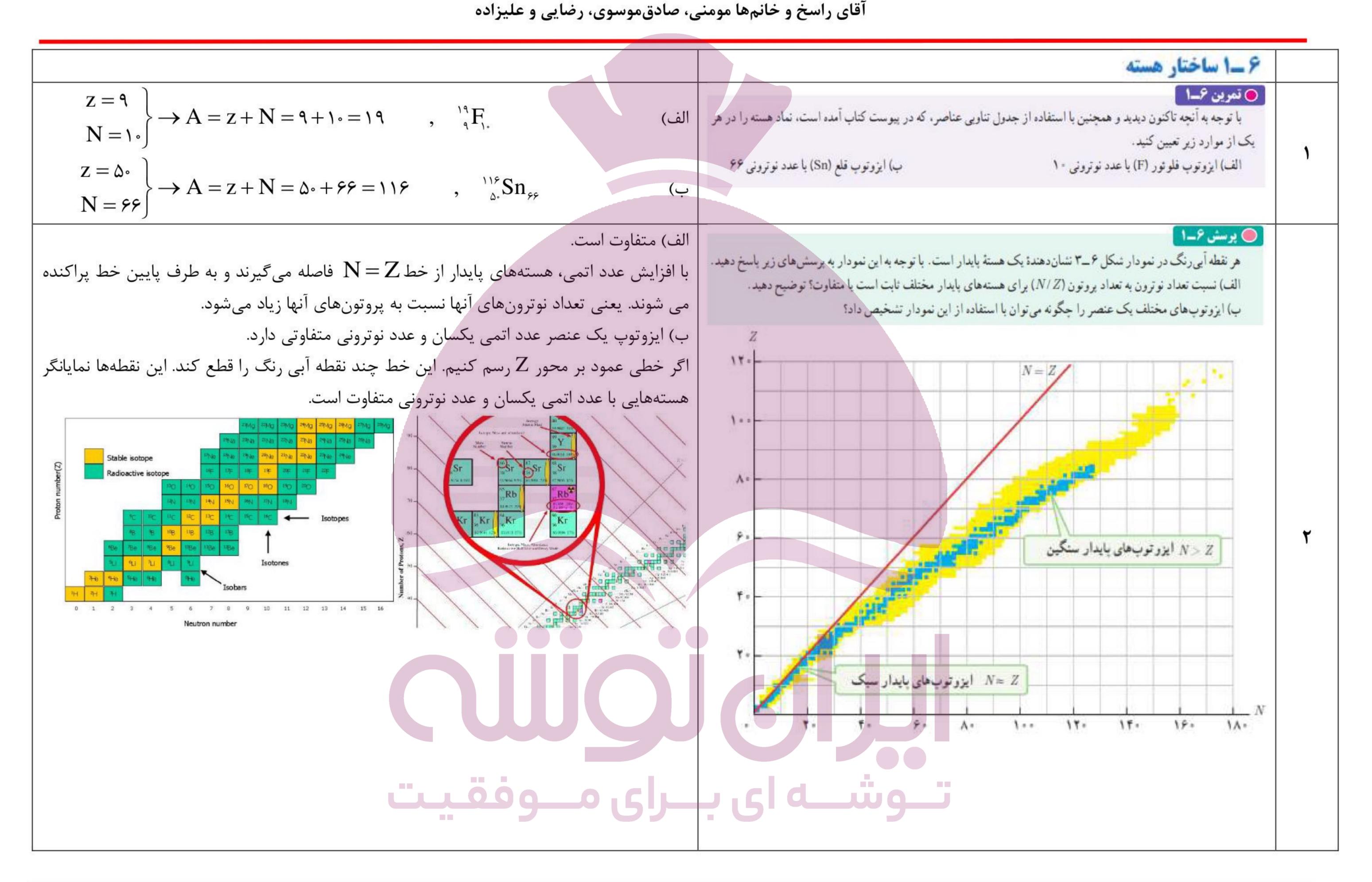


Scanned with CamScanner

آشنایی با فیزیک هستهای			
pdf صفحه	صفحه کتاب درسی	فعالیت / پرسش/تمرین / مسائل	
1	144	9-1- ساختار هسته	
•	144	تمرین ۶-۱	1
•	141	پرسش 9-1	۲
*	100	پرسش و مسئله ها آخر فصل- ۱	٣
*	100	پرسش و مسئله ها آخر فصل- ۲	۴
Y	100	پرسش و مسئله ها آخر فصل- ۳	۵
*	100	پرسش و مسئله ها آخر فصل- 4	۶
	144	۶-۲- پرتوزایی طبیعی و نیمعمر	
*	141	پرسش ۶-۲	Y
*	144	تمرین ۶-۲	٨
*	140	تمرین ۶-۳	٩
*	144	تمرین ۶-۴	1.
*	100	پرسش و مسئله ها آخر فصل- ۵	11
*	100	پرسش و مسئله ها آخر فصل- ۶	14
*	100	پرسش و مسئله ها آخر فصل- ۷	14
۵	100	پرسش و مسئله ها آخر فصل- ۸	14
۵	100	پرسش و مسئله ها آخر فصل- ۹	10
8-0	100	پرسش و مسئله ها آخر فصل- 10	18
9	109	پرسش و مسئله ها آخر فصل- 11	14
Y	144	8-3 شکاف هسته ای	
9-1	108	پرسش و مسئله ها آخر فصل- ۱۲	1.4
1.	108	پرسش و مسئله ها آخر فصل- ۱۳	19
1.	109	پرسش و مسئله ها آخر فصل- ۱۴	4+

گروه فیزیک استان گیلان


Scanned with CamScanner

1.	109	پرسش و مسئله ها آخر فصل- ۱۵	71
11	109	پرسش و مسئله ها آخر فصل- ۱۶	**
17	101	9-4 گداخت هستهای	
17	109	پرسش و مسئله ها آخر فصل- ۱۷	24

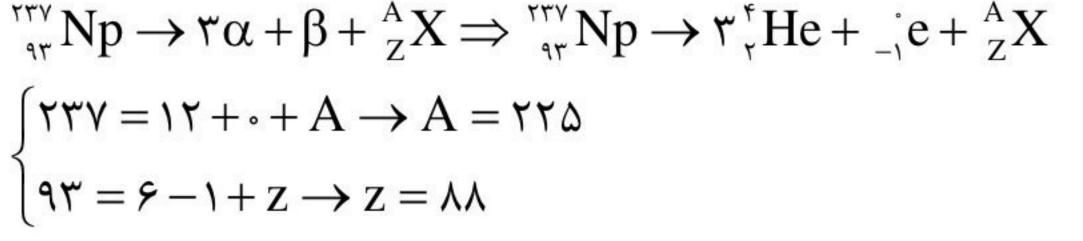
گروه فیزیک استان گیلان

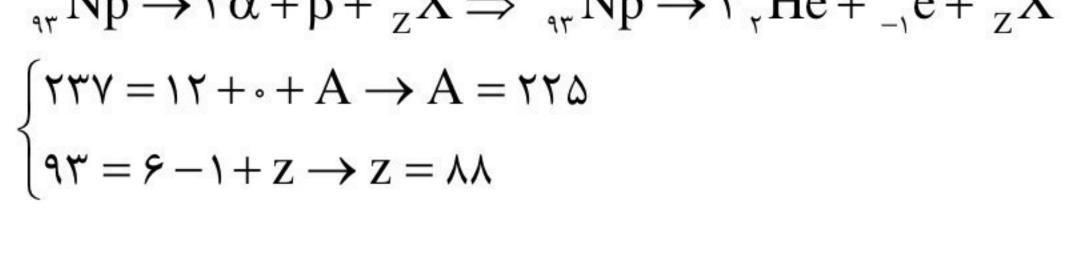
Scanned with CamScanner

-بخش ۶-۱-


	2- ا ساختار هسته	
	 مرتبهٔ بزرگی تعداد نوترونهایی را که میتوان تنگ هم در یک توب تنیس به شعاع ۳/۲cm جای داد، تخمین بزنید. در این صورت مرتبهٔ بزرگی جرم این توپ چقدر است؟ (مرتبهٔ بزرگی شعاع و جرم نوترون را بهترتیب شاء و ۱۰-۳ و ۱۰-۳ و ۱۰-۳ در نظر بگیرید.) 	$V = \frac{\epsilon}{r} \pi r^r = \frac{\epsilon}{r} \times r' \cdot r \times (r / r \times 1)^{-r} m)^r = 1 / r \times 10^{-\epsilon} m^r$ $V' = \frac{\epsilon}{r} \pi r'^r = \frac{\epsilon}{r} \times r' \cdot r \times (r / r \times 1)^{-r} m)^r = 1 / r \times 10^{-\epsilon} m^r$ $V' = \frac{\epsilon}{r} \pi r'^r = \frac{\epsilon}{r} \times r' \cdot r \times (1 \cdot r^{-1\delta} m)^r = 1 / r \times 10^{-\epsilon} m^r$ $V' = \frac{1 / r \times 10^{-\epsilon} m^r}{1 / r \times 10^{-\epsilon} m^r} \approx 10^{\epsilon}$ $V' = \frac{1 / r \times 10^{-\epsilon} m^r}{1 / r \times 10^{-\epsilon} m^r} \approx 10^{\epsilon}$ $V' = \frac{1 / r \times 10^{-\epsilon} m^r}{1 / r \times 10^{-\epsilon} m^r} \approx 10^{\epsilon}$ $V' = \frac{1 / r \times 10^{-\epsilon} m^r}{1 / r \times 10^{-\epsilon} m^r} \approx 10^{\epsilon}$ $V' = \frac{1 / r \times 10^{-\epsilon} m^r}{1 / r \times 10^{-\epsilon} m^r} \approx 10^{\epsilon}$
L	 الف) تعداد نو کلئونها باد نو ترونها ب) بار الکتریکی خالص هسته 	الف) $^{\text{Y-N}}_{\text{AY}} \text{Pb} \rightarrow \text{A} = \text{Y-A}$ (الف) $^{\text{Y-A}}_{\text{AY}} \text{Pb} \rightarrow \text{N} = \text{A} - \text{Z} = \text{Y-A} - \text{AY} = \text{1Y}$ (ب $q = +\text{AY} = +\text{AY} \times \text{1/}9 \times \text{1}^{-\text{19}}\text{c} = \text{1/}717 \times \text{1}^{-\text{19}}\text{c}$ (پ وتون و نوترون تشکیل شده است که نوترون بار ندارد و بار پروتون مثبت است. پس بار الکتریکی خالص هسته مثبت است.
	اله. در هر یک از موارد زیر نماد X چه عنصری را نشان می دهد و در هستهٔ هر یک چند نوترون وجود دارد؟ در صورت لزوم از جدول تناویی استفاده کنید. الف) ۱۹۵۲ با ۲۲ با ۲۴۲ با ۲۴۲ با ۲۴۲ با ۲۴۲ با ۲۴۲ با ۲۹۲ با ۲۹	$^{190}_{\gamma\lambda}X = ^{190}_{\gamma\lambda}Pt$ $\rightarrow N = 190 - \gamma\lambda = 117$ (ف) $^{rr}_{18}X = ^{rr}_{18}S$ $\rightarrow N = rr - 18 = 18$ (ب $^{81}_{79}X = ^{81}_{79}Cu$ $\rightarrow N = 81 - 79 = rr$ (پ
I .	عد آیا می توان ایزوتوب $X^{\epsilon_1}_{70}X$ را با روش شیمیایی از ایزوتوپ $X^{\epsilon_2}_{70}X$ جدا کرد؟ از ایزوتوب $X^{\epsilon_3}_{70}$ جطور؟ باسخ خود را توضیح دهید.	ایزوتوپ X_{7a}^{6} و X_{7a}^{6} دارای عدد اتمی یکسان اند پس خواص شیمیایی یکسانی دارد. و با روش شیمیایی نمی توان این دو ایزوتوپ را جدا کرد. این دو ایزوتوپ دارای خواص فیزیکی متفاوت مانند عدد جرمی و عدد نوترونی متفاوت میباشند. ولی ایزوتوپ X_{7a}^{6} و X_{7a}^{6} را می توان به روش شیمیایی جدا کرد. زیرا عدد اتمی و خواص شیمیایی متفاوتی دارند.

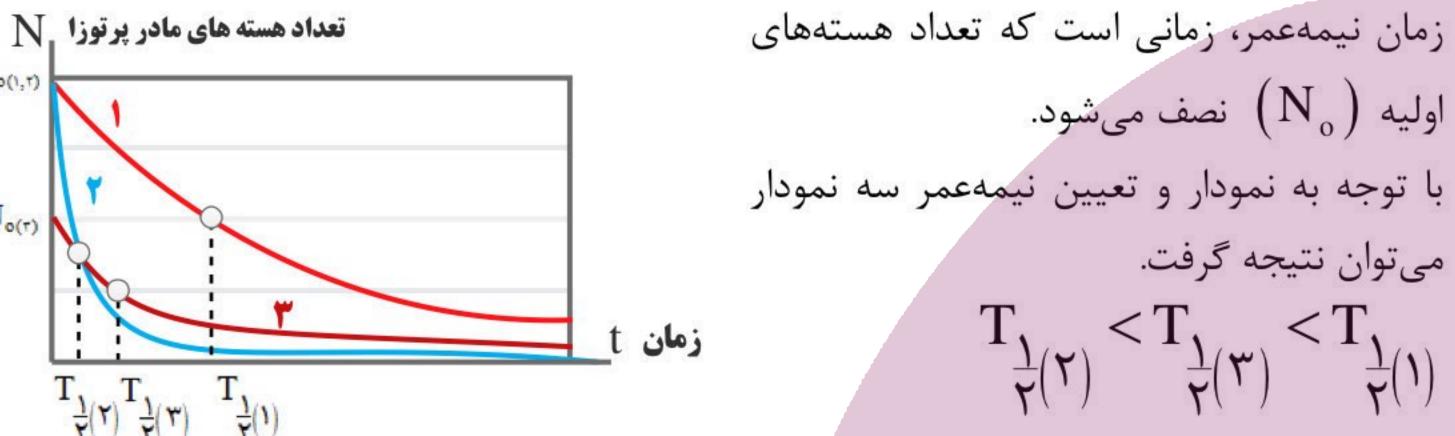
	2-2 پرتوزایی طبیعی و نیمه عمر	
با توجه به قانون دست راست می توان تعیین کرد. پر توی بالایی: از قانون دست راست پیروی می کند. پس بتا منفی (β^-) است. پر توی وسط: در میدان مغناطیسی منحرف نشده است و بار الکتریکی ندارد. پر توی پایین: از قانون دست راست پیروی نکرده و برعکس است. پس بتا مثبت (β^+) است.	شکل روبهرو طرح آزمایش ساده ای را نشان می دهد که به کمک آن می توان سه نوع پرتوزایی طبیعی را مشاهده کرد و به تفاوت بار و جرم پرتوها از یکدیگر پی برد. قطعه ای از مادهٔ استوانهٔ سربی تا داره به تفاوت بار و جرم پرتوها از یکدیگر پی برد. قطعه ای از مادهٔ استوانهٔ سربی تا داره به تنابات تنابات تا ت	*
$ \begin{array}{c} $	یرین ۲-۶ کمرین ۲-۶ لوتتیم (۱۷٬۴ Lu) عنصر پرتوزایی است که با گسیل بتای منفی، واپاشی می کند. معادلهٔ این واکنش را بنویسید و با استفاده از جدول تناویی عنصرها که در پیوست آمده است، عنصر جدیدی را که تولید می شود تعیین کنید.	٨
$ \begin{array}{l} \stackrel{\land \circ}{\land} O \rightarrow \stackrel{\circ}{+} e^{+} + \stackrel{A'}{z'} Y \\ \stackrel{\land \circ}{\land} = A' + \circ \rightarrow A' = 1 \circ \\ \stackrel{\land}{\land} = z' + 1 \rightarrow z' = Y \end{array} \right\} \rightarrow \stackrel{\land \circ}{\lor} N $	را بنویسید و با استفاده از جدول تناوبی عنصرها که در ایزوتوب (۱٬۵۰۰) با گسیل بوزیترون، واپاشی می کند. معادلهٔ این واکنش را بنویسید و با استفاده از جدول تناوبی عنصرها که در پیوست آمده است، عنصر جدیدی را که تولید می شود تعیین کنید.	٩
$N = \frac{N_o}{\gamma^n} \to \frac{1}{\Lambda} N_o = \frac{N_o}{\gamma^n} \to \gamma^n = \Lambda = \gamma^r \to n = \gamma$ $n = \frac{t}{T_{\frac{1}{\gamma}}} \to \gamma^r = \frac{9(\text{day})}{T_{\frac{1}{\gamma}}} \to T_{\frac{1}{\gamma}} = \gamma^r (\text{day})$	یس از گذشت ۹ روز، تعداد هسته های پرتوزای یک نمونه، به ۱ تعداد موجود در آغاز کاهش یافته است. نیمه عمر (پرحسب روز) ماده جقدر است؟	

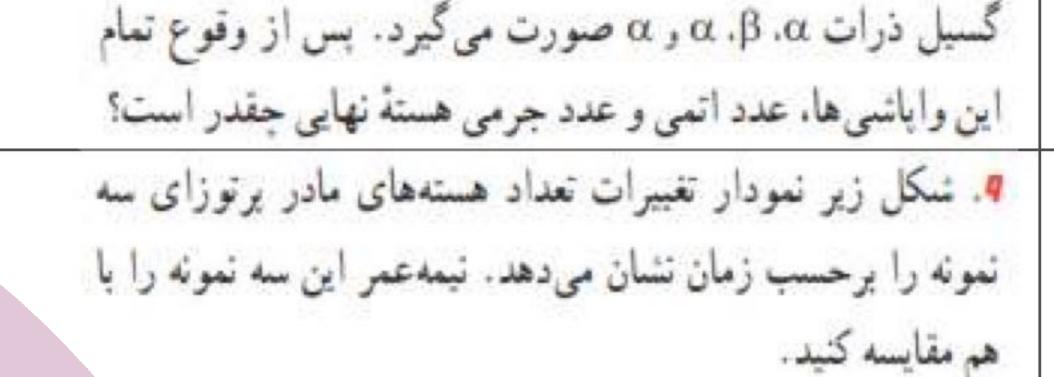

		2-2 پرتوزایی طبیعی و نیمه عمر	
${}^{"}_{\Lambda r} Pb \rightarrow {}^{"}_{\Lambda r} Bi + {}^{"}_{\Lambda r} X$ ${}^{"}_{\beta} c \rightarrow {}^{"}_{r} B + {}^{"}_{r} X \implies {}^{"}_{r} X \longleftrightarrow {}^{r} \left({}^{"}_{+} e \right)$		$^{7/1}_{\Lambda \Upsilon} Pb \longrightarrow ^{7/1}_{\Lambda \Upsilon} Bi + \dots$ با چند با چند واپاشی زیر نشان دهندهٔ یک یا چند $^{1/1}_{\Lambda \Upsilon} Bi + \dots$ خالی در فرایندهای واپاشی زیر نشان دهندهٔ یک یا چند $^{7/1}_{\Lambda \Upsilon} Bi + \dots$ ذرهٔ $^{1/1}_{\Lambda \Upsilon} C \longrightarrow ^{1/1}_{\Lambda \Upsilon} Bi + \dots$ خالی را کامل کنید.	
${}^{\prime \uparrow \prime}_{\uparrow , } \text{Th}^* \longrightarrow {}^{\prime \uparrow \prime}_{\uparrow , } \text{Th} + {}^{\prime}_{\downarrow } \text{X}$ ${}^{\prime \land}_{\uparrow} \text{F} \longrightarrow {}^{\prime \land}_{\land} \text{Bi} + {}^{\prime}_{\downarrow } \text{X}$			11
$ \begin{array}{l} $	الف)	از واپاشی های زیر را به صورت و یک از واپاشی های زیر را به صورت کنید. $\frac{A}{Z}$	
$^{4}Na \rightarrow _{-1}e + ^{A}Z $ منیزیم $A = Y^{e} - ^{A}Z $ $X = ^{1}V^{e}Mg$ منیزیم $A = Y^{e} - ^{e} = Y^{e}$ $X = ^{1}V^{e}Mg$ منیزیم $X = Y^{e} - ^{e} = Y^{e}$ $X = ^{1}V^{e}Mg$	ب)	الف) ^۲ ξ Pu (وا پاشی α انجام دهد. ب) سدیم ۲ξ Na وا پاشی β انجام دهد. ب) سدیم ۱۳۵۲ وا پاشی B انجام دهد.	
$ZN ightarrow - 10^{\circ}e + \frac{A}{Z}X - \frac{A}{Z}X = 10^{\circ}O$ $A = 17 - 0 = 17$ & $Z = 17 - 0$	پ)	ب) نیتروژن ۱،۳۷ واپاشی ٔ β انجام دهد. ت) ۱۵۵ واپاشی ٔ β انجام دهد.	11
$A = 1 \Delta - 0 = 1 \Delta$ فيتروژن $A = 1 \Delta + 1 = 1 \Delta$ $A = 1 \Delta - 0 = 1 \Delta$ $A = 1 \Delta - 0 = 1 \Delta$ $A = 1 \Delta - 0 = 1 \Delta$	ت)		
$ \begin{cases} A = f + Y \cdot Y \rightarrow A = Y \cdot Y \\ Z = Y + \lambda Y \rightarrow Z = \lambda f \end{cases} \rightarrow \begin{cases} A = f + Y \cdot Y \rightarrow A = Y \cdot Y \\ Z = Y + \lambda Y \rightarrow Z = \lambda f \end{cases} \rightarrow \begin{cases} A = f + Y \cdot Y \rightarrow A = Y \cdot Y \\ A = f \cdot Y \cdot Y \rightarrow X = Y \cdot Y \cdot Y \rightarrow X \cdot Y = X \cdot Y \cdot Y \rightarrow X \rightarrow X \cdot Y \rightarrow X \rightarrow X \cdot Y \rightarrow X$	پلونیه	 ۱۰ سرب ۲٬γ Pb هستهٔ دختر پایداری است که می تواند از واباشی α می این α یک از این α یک از این واپاشی β حاصل شود. فرایندهای مربوط به هر یک از این واپاشی ها را بنویسید. در هر مورد هستهٔ مادر را به صورت ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	۱۳
$A \times Y \to Y$	حرای مــوف	شخص کنید. تــوشـــه ای بـ	11


14

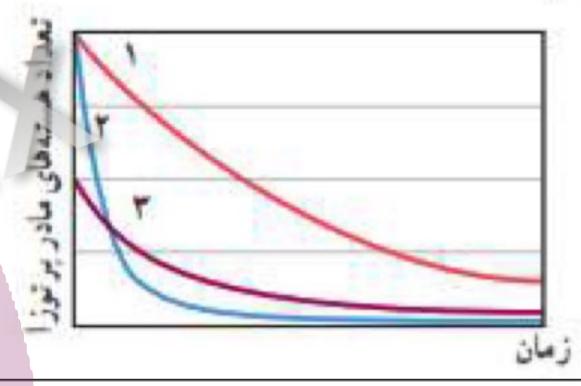
10

پرتوزایی طبیعی نیمه عمر

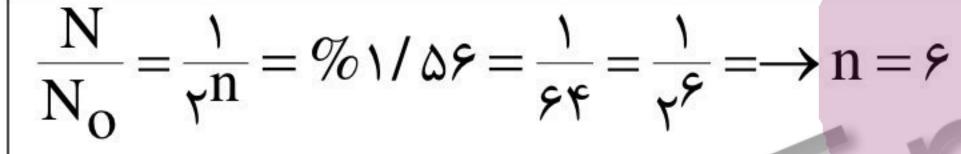




با توجه به نمودار و تعیین نیمه عمر سه نمودار


$$T_{\frac{1}{7}(7)} < T_{\frac{1}{7}(7)} < T_{\frac{1}{7}(1)}$$

1. نیتونیم Np ۱۳۴۷ ایزوتویی است که در راکتورهای هستهای


تولید می شود. این ایزوتوب ناپایدار است و واباشی آن از طریق

۱۰. هنگامی که نیتروژن جو زمین توسط پرتوهای کیهانی (که معمولا از جنس پروتون، ذرههای α و الکترون هستند) بمباران می شود، ایزوتوپ پرتوزای کربن ۱۴ با آهنگ ثابتی در لایههای فوقانی جو تولید میشود. این کربن پرتوزا، با کربن ۱۲ که به طور طبیعی در جو وجود دارد درهم می آمیزد. بررسیها نشان داده است که به ازای هر ۱۰۰۰۰ میلیارد اتم پایدار کربن ۱۲، تقریبا یک اتم پر توزای کربن ۱۴ از این طریق وارد جو می شود.

اتمهای کربن جوی از طریق فعالیتهای بیولوژیکی از قبیل فتوسنتز و تنفس، به نحو کاتورهای مکان خود را عوض می کنند و به بدن جانداران منتقل می شوند. به طوری که اتمهای کربن هر موجود زنده شامل کسر کوچک و ثابتی از ایزوتوپ پر توزای کربن ۱۴ است.

وقتی موجود زندهای میمیرد، مقدار کربن پرتوزای به تله افتاده در موجود غیر زنده، با نیمه عمر ۵۷۳۰ سال رو به کاهش میگذارد. کربن ۱۴ موجود در یک

$$n = \frac{t}{T_{\frac{1}{r}}} \to r = \frac{t}{\Delta v r_{\circ} (Year)} \to t = r r_{\circ} (Year)$$

پرتوزایی طبیعی نیمه عمر

	نمونه زغال قدیمی، ۱/۵۶ درصد (معادل $\frac{1}{99}$) مقدار عادی کربن ۱۴ موجود در زغالی است که تازه تولید شده است. سن تقریبی این زغال قدیمی چقدر است؟ موجود زنده شامل کسر کوچک و ثابتی از ایزوتوپ پرتوزای کربن ۱۴ است. وقتی موجود زنده ای می میرد، مقدار کربن پرتوزای به تله افتاده در موجود غیر زنده، یا نیمه عمر ۵۷۳۰ سال رو به کاهش می گذارد. کربن ۱۴ موجود در یک نمونه زغال قدیمی، ۱/۱۵۶ درصد (معادل $\frac{1}{99}$) مقدار عادی کربن ۱۴ موجود در است؟ زغالی است که تازه تولید شده است. سن تقریبی این زغال قدیمی چقدر است؟
$n = \frac{t}{T_{\frac{1}{r}}} \to n = \frac{fh}{h} \to n = f$ $N = \frac{N_{\circ}}{r^{n}} = \frac{N_{\circ}}{r^{f}} = \frac{N_{\circ}}{16}$	ال.نیمه عمر بیسموت ۲۱۲ حدود ۶۰ دقیقه است. پس از گذشت جهار ساعت، چه کسری از مادهٔ اولیه، در نمونهای از این بیسموت، باقی می ماند؟

2-4 شكافت هستهاي ح-4 شكافت هستهاي

۱۳. معادلهٔ زیر بخشی از واکنشی را نشان میدهد که در یک راکتور هسته ای روی می دهد.

 $^{770}_{97}U + 'n \rightarrow ^{779}_{97}U$

الف) اهمیت عددهای ۲۳۵ و ۹۲ را توضیح دهید.

ب) اتم های ٢٦٠ ناپايدارند و خودبه خود به قطعه هايي کو چک تر همراه با تعدادی نوترون سریع (بین ۲ تا ۵ عدد) و مقدار زیادی انرژی واپاشیده می شود. این فرایند چه نام دارد و انرژی آزاد شده در این فرایند چگونه تعیین می شود؟

ب) اورانیم ۲۳۵ عمدتاً نو ترون های با تندی کم را جذب می کند تا نو ترونهای سریع را. توضیح دهید چگونه تندی نو ترونها را در قلب راکتور کم میکنند.

> ت) چگونه تولید انرژی را در قلب راکتور کنترل میکنند؟ ث) واکنش زنجیری را توضیح دهید.

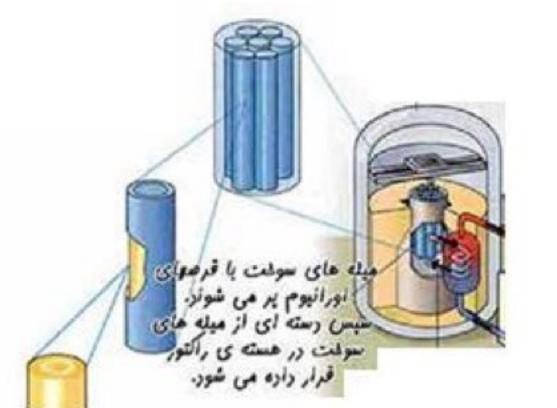
11

ج) انرژی به صورت گرما در قلب راکتور تولید می شود. چگونه گرما از قلب راکتور گرفته و به انرژی الکتریکی تبدیل می شود؟ ج) هنگامی که میله های سوخت از مرکز راکتور بیرون کشیده می شوند، آنها «پرتوزا» و «ایزوتوب»هایی با «نیمه عمر» طولانی هستند. واژه های داخل گیومه را توضیح دهید.


 $^{775}_{97}U + ^{1}_{n} \rightarrow ^{775}_{97}U$ (الف)

شكافت هستهاي

عددهای ۲۳۵ و ۹۲ نشان میدهد که هسته سنگین است. در هستههای سنگین که تعداد پروتونها و نوترونهای آنها زیاد است، و فقط نوکلئونهای مجاور بر هم نیروی هستهای اثر میدهند، اما همهی پروتونها بر هم نیروی کولنی وارد می کنند؛ یعنی تعداد نیروهای دافعهی الکتریکی بین پروتونها در مقایسه با تعداد جاذبهی هستهای قوی زیاد است و این موجب ناپایداری هسته می شود.


در تمام هستههای پایدار، نیروهای جاذبه هستهای بر نیروی دافعهی کولنی غلبه دارد. اما در هستهی اورانیوم این برتری شکننده است.

هنگامیکه یک نوترون کند که به هستهی نزدیک می شود، هسته با نزدیک شدنش $^{773}_{97}$ مخالفت نمی کند و به راحتی نوترون را میبلعد و آن را به جمع نوکلئونهای خود میافزاید.

اضافه شدن یک نوترون باعث کش آمدن هسته ی اورانیوم میشود. نیروی کولنی از این فرصت استفاده نموده و هسته را کشیده و کشیدهتر می کند. اگر این کشیدگی از حد (مرحلهی بحرانی) بگذرد، نیروهای هستهای تسلیم میشوند و هستهی اورانیوم به دو هستهی سبکتر شکافته میشود. این فرآیند را شکافت هستهای مینامند.

 $E = \Delta mc$ انرژی آزاد شده از اختلاف جرم هسته اولیه و هسته تولید شده تعیین می گردد.

اورانیوم را در قطعههای کوچک تقسیم کرده، و بین آنها لایهای کربن (گرافیت) قرار میدهند. به این ترتیب انرژی نوترونها در برخورد با اتمهای سبک کربن به شدت کاهش می یابد.

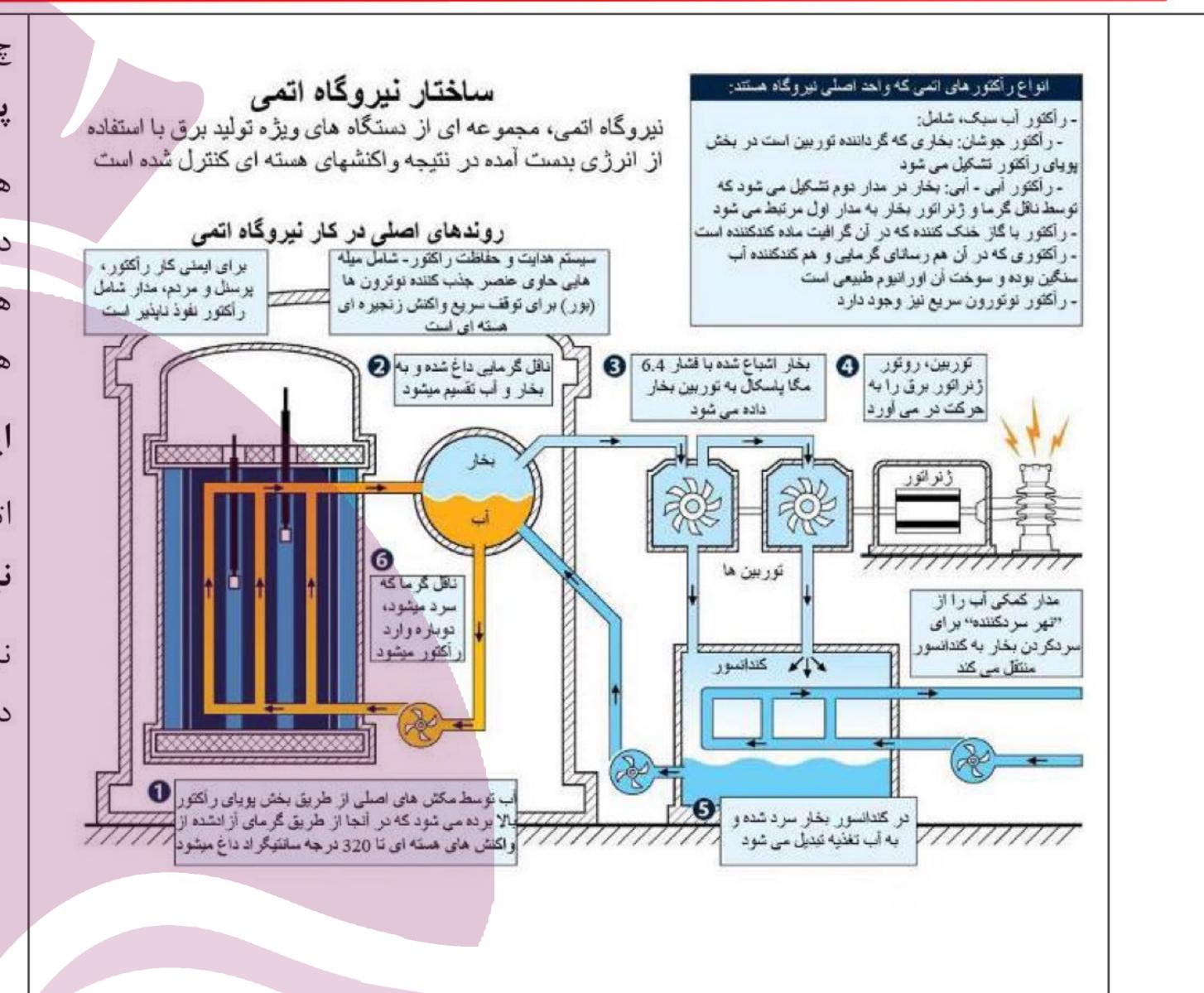
برای کند کردن نوترون از آب معمولی، آب سنگین، گرافیت

مورد استفاده قرار می گیرد.

از ترکیبهای موادی مثل کادمیوم و بور برای جذب نوترونها بهره می گیریم. این مواد را به صورت میلهای در آورده و در داخل راکتور کار گذاشته می شود. به این میلهها، میلههای کنترل می گویند. میلههای کنترل اجازه نمی دهند که درصد نوترونها در سوخت هستهای از میزان مجاز بالاتر رود.

ث) در یک قطعه اورانیم بعد از این که اولین واکنش شکافت انجام شد، چند نوترون نوزاد و پرانرژی بعد

از طی مسافتی آنقدر به ذرههای مسیرشان برخورد می کنند تا کند و تنبل شوند و هر کدامشان در آغوش یک هستهٔ U^{770} دیگر آرام بگیرند.

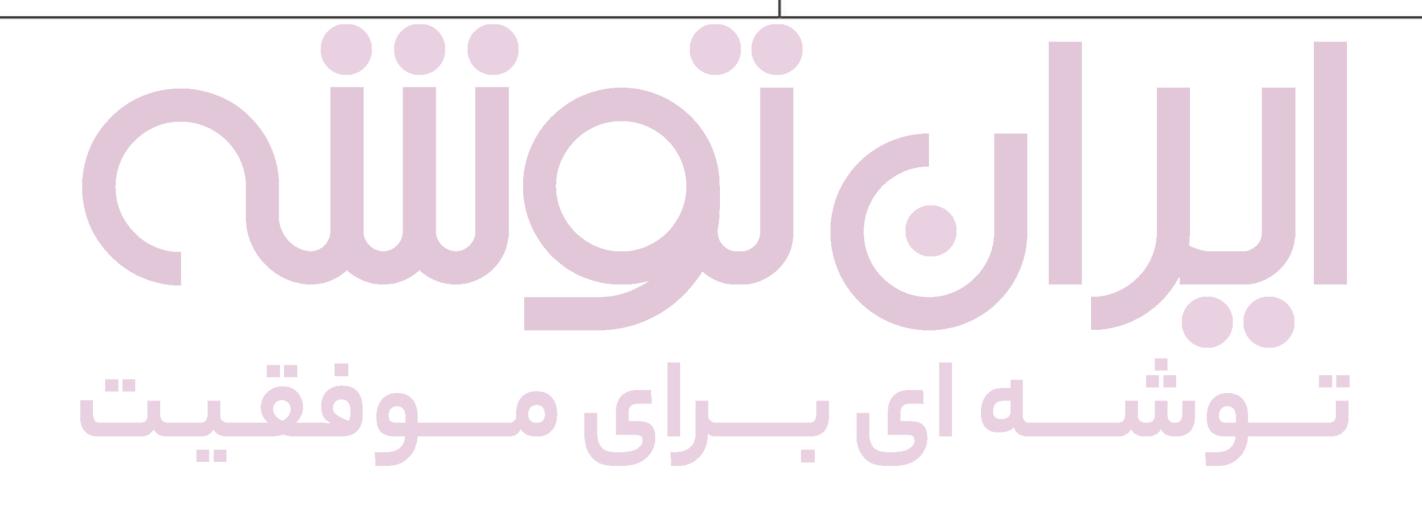

شكافت هستهاي

بنابراین اگر هر نوترون آزادشده، جذب یک هسته U ۲۳۵ دیگر شود، به تعداد انها واكنش شكافت جديد رخ

بطور نمونه، اگر به ازای هر واکنش شکافت ۳ نوترون آزاد شود، سه

واکنش شکافت دیگر رخ میدهد و ۹ نوترون جدید متولد میشود و اگر این ۹ تا توسط هسته ${
m U}^{
m au 770}$ دیگر بلعیده شوند، ۲۷ نوترون دیگر آزاد میشود و ... و به این ترتیب، در مدت کوتاهی شاهد زنجیرهای از واکنش های شکافت خواهیم بود. به همه این واکنش ها به طور یکجا «واکنش زنجیرهای» می گوییم.

درون محفظهی راکتور، آب با فشار زیاد جریان دارد. فشار زیاد باعث میشود، نقطه جوش آب به شدت افزایش می یابد و در دمای زیاد می جوشد. آب پرفشار، گرمای حاصل از واکنش زنجیرهای را می گیرد و آن را از محفظهی راکتور خارج و در یک محفظهی دیگر به آب کم فشار میدهد و آب کم فشار را به سرعت تبخیر می کند. آبهای بخار شده، توربینهای مولد جریان الکتریکی را به چرخش وا میدارد و از این طریق انرژی شکات هستهای به انرژی مفید الکتریکی تبدیل میشود.


پرتوزایی با رادیواکتیویته

هستهی بعضی از اتمها برای آن که به وضع پایدارتری برسند، خودبه خود و بدون دخالت عوامل بیگانه، دچار تغییر و دگرگونی میشوند و در این فرایند، ذرهها پرتوهایی را تابش میکنند. به این ویژگی برخی هسته ها که فعالانه در حال واپاشی و تابش ذره ها و پرتوها هستند، رادیواکتیویته یا پرتوزایی و به این هستهی خود به خود واپاشنده هستههای رادیواکتیو یا پرتوزا می گویند.

ايزوتوپ

اتمهایی را که پروتونهای آنها، با هم مساوی و تعداد نوترونهایشان مختلف است، ایزوتوپ می گویند. نيمه عمر

نیمه عمر مدت زمانی است که نیمی از هستههای فعال یک ماده ی پرتوزا، غیر فعال شود یا به تعبیری دیگر نیمه عمر مدت زمانی است که تعداد هسته های فعال یک مادهی پرتوزا نصف شود.

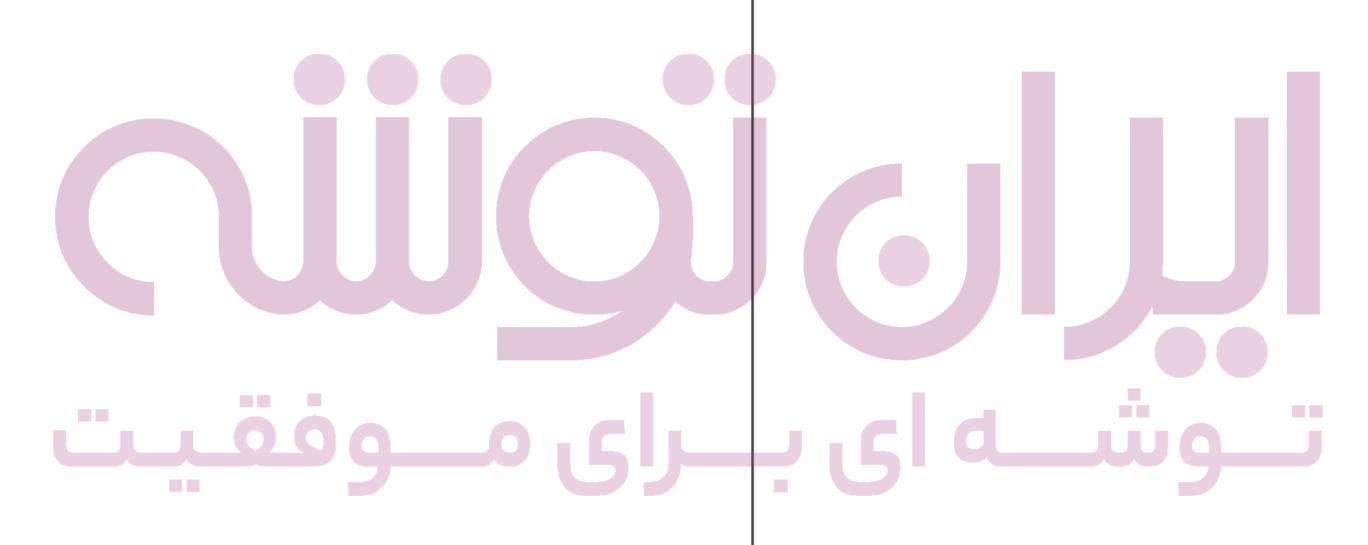
m = ٠/ ٧ %kg = ٠/ ٠٠ ٧ kg = ٧ g	
$n = \frac{m}{M} = \frac{N}{N_A} \rightarrow \frac{N}{\epsilon / \epsilon \times 10^{77} \text{ (1/ moL)}} = \frac{\text{V g}}{\text{TTA} (\text{g / moL})}$ دو کنش شکافت حدود $N_A \rightarrow \frac{N}{\epsilon / \epsilon \times 10^{77} (\text{1/ moL})} = \frac{\text{V g}}{\text{TTA} (\text{g / moL})}$	
$\rightarrow N = 1/4 \times 10^{77}$ موجود در یک کیلوگرم از این اورانیم	
$E_T = NE_{Particle} = 1/1 \times 10^{77} \times 10^{87} \times 10^{8} \times 10^{8} \times 10^{10} \times 10^{10}$	1 1
$\rightarrow \text{٣/9} \times 1.7^{\text{8}} \times 1.7^{\text{8}} \times 1.7^{\text{9}} = \text{$0.0000} \text{ (MeV)}$ و ژول (I) چقدر است؟	25553255
ب) با سوختن هر کیلوگرم زغال سنگ، حدود ۳۰MJ انرژی (۳۰MJ انرژی ۱MeV =۱۰° ×۱/۶×۱۰ ^{-۱۹} J =۱/۶×۱۰ ^{-۱۳} J	19
گرمایی آزاد میشود. چند کیلوگرم زغال سنگ باید بسوزد تا	
معادل انرژی به دست آمده در قسمت الف، انرژی تولید شود؟ ۱kg ۳×۱۰ ^۷ J	
$m \qquad \Delta / \forall \forall \forall \forall \forall \exists \exists$	
انرژی حاصل از ۷ گرم اورانیوم معادل سوختن ۱۹/۱ تن زغال است.	
$^{775}_{97}U + ^{1}_{1}n \rightarrow ^{177}_{01}Sb + ^{1}_{2}X + ^{1}_{2}n$ یکی از واکنش های ممکن در شکافت $^{775}_{97}U + ^{1}_{1}n \rightarrow ^{177}_{01}Sb + ^{1}_{2}X + ^{1}_{2}n$ داده شده	
Y است. در این واکنش عدد اتمی Z ، عدد جرمی A و عنصر X را X معدد اتمی X عدد جرمی A و عنصر X را X معدد اتمی X عدد اتمی X عدد جرمی X و عنصر X را X معدد اتمی X عدد اتمی X این X	
$ \left\{ \begin{array}{l} + Y = Y + A + Y \rightarrow A = 99 \\ + Y = Y + A + Y + Y$	۲٠
$n + {}^{\dagger}_{q \uparrow} U \rightarrow {}^{\dagger}_{0 \uparrow} Sb + {}^{A}_{Z} X + {}^{\dagger}_{0 \uparrow} n$	
در صورت لزوم از جدول تناویی کمک بگیرید.	
$^{ m m m m m m m m m m m m m $	-
1 + 1 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	''

تـوشــه ای بــرای مــوفقیت

بازده =
$$\frac{P_{out}}{P_{in}} \rightarrow .77\Delta = \frac{1...Mw}{P_{in}} \rightarrow P_{in} = 7/\lambda 9 \times 1.7 MW$$

 $E_{in} = P_{in}t \rightarrow E_{in} = 7/\lambda s \times 1.$ $(MW) \times rs \Delta \times \lambda s + ... S$ $E_{in} = 9/\cdot 1 \times 1.$ MJ

تعداد هسته ها، برای این مقدار انرژی $N = \frac{E_{in}}{E} = \frac{9 \times 1.9}{7.0 \times 1.5 \times 1.5 \times 1.0} = 7 / 1.0 \times 1.0$


$$n = \frac{N}{N_A} = \frac{7/\Lambda 17 \times 1^{5/4}}{5/57 \times 1^{5/4} \left(1/moL\right)} = 5/57 \times 1^{5/4} moL$$

$$n = \frac{m}{M} \to f / f \vee \times 1^{r} \mod L = \frac{m}{r \vee \Delta(g / moL)} \to m = 1 / \cdot 9 \vee \times 1^{r} g$$

$$m = 1/ \cdot 91 \times 1^{r} kg$$

14. بازده نیروگاه هسته ای بوشهر حدود ۳۵ درصد است. یعنی ۶۵ درصد ازرژی حاصل از شکافت ایزوتوپ اورانیم ۲۳۵، به صورت گرما تلف و حدود ۳۵ درصد آن، به انرژی الکتریکی تبدیل می شود. با توجه به اینکه در هر شکافت حدود MeV ۲۰۰ MeV انرژی آزاد می شود، جند کیلوگرم اورانیم ۲۳۵ در سال شکافت بیدا می کند؟ (فرض کنید نیروگاه در طول سال با توان بایدار بیدا می کند؟ (فرض کنید نیروگاه در طول سال با توان بایدار در ۱۰۰۰ مگاوات کار می کند.)

71

پاسخ پرسش های فصل ششم ۔ بخش 6-3-

آقای راسخ و خانمها مومنی، صادقموسوی، رضایی و علیزاده

	2-2 گداخت (همجوشی) هسته ای 2-2 گداخت هسته ای	
$_{0}^{1}n+_{97}^{775}U$, $A=1+770=777$ الف) تعداد نو کلئون های واکنش شکاف اورانیوم:	۱۷.۱۷ انرژی آزادشده در هر واکنش شکافت اورانیم ۲۳۵ با یک	
$E_{\mathrm{T}} = \mathrm{NE} ightarrow \mathrm{E} = rac{\mathrm{E}_{\mathrm{T}}}{\mathrm{N}} ightarrow \mathrm{E} = rac{\mathrm{Y} \cdot \mathrm{Y} / \Delta \mathrm{MeV}}{\mathrm{YY}} = \mathrm{A} / \Delta \mathrm{A} imes \mathrm{N}^{-\mathrm{Y}} \mathrm{MeV}$ انرژی هر نوکلئون	نوترون کُند حدود ۲/۵ MeV و در هر واکنش گداختِ دوتریم با تریتیم حدود ۱۷/۶ MeV است.	
${}^{r}_{,}D + {}^{r}_{,}T \rightarrow {}^{r}_{,}He + {}^{h}_{,}n$	الف) تعداد نوكلئونهای شركتكننده در هر واكنش شكافت	
تعداد نوکلئونهای واکنش گداخت دوتریم با تریتیم $A = T + T = 0$	چقدر است؟ انرژی آزادشده به ازای هر نو کلئون را حساب کنید.	
$E_{\mathrm{T}}' = \mathrm{NE}' ightarrow \mathrm{E}' = rac{\mathrm{E}_{\mathrm{T}}'}{\mathrm{N}} ightarrow \mathrm{E}' = rac{\mathrm{17/9MeV}}{\mathrm{\Delta}} = \mathrm{7/\Delta7MeV}$ انرژی هر نوکلئون $\mathrm{E}'_{\mathrm{T}} = \mathrm{NE}' ightarrow \mathrm{E}' = rac{\mathrm{E}_{\mathrm{T}}'}{\mathrm{N}} ightarrow \mathrm{E}' = rac{\mathrm{17/9MeV}}{\mathrm{\Delta}} = \mathrm{7/\Delta7MeV}$	ب) تعداد نو کلئون های شرکت کننده در هر واکنش گداخت چقدر	
پ) مقدار انرژی آزاد شده هر نوکلئون در واکنش گداخت	است؟ انرژی آزاد شده به ازای هر نوکلئون را حساب کنید.	24
$rac{E'}{m} = rac{\pi/\Delta \tau ext{MeV}}{\pi/\Delta \tau ext{MeV}} \simeq \epsilon/1$ هسته ای (دوتریم با تریتیم) ۱/۴ برابر مقدار انرژی آزاد	پ) نتیجه های قسمت (الف) و (ب) را با یکدیگر مقایسه کنید. با	
$E \lambda / \Delta \lambda \times 10^{-7} \mathrm{MeV}$ شده هر نوکلئون شکافت هسته ای است.	توجه به نیاز روزافزون بشر به انرژی، و با توجه به اینکه مواد قابل	
تولید انرژی بیشتر و پرتوزایی کمتر و نداشتن پسماند و هسته های باقی مانده از اهمیت های واکنش	شکافت مانند ^{۱۲۵} به مقدار بسیار کمی در طبیعت وجود دارد	
گداخت است.	ولی دوتریم بهطور فراوان در آب اقیانوسها و دریاها موجود	
	است و جدا کردن آن از هیدروژن معمولی آسان و کم هزینه است.	
	اهمیت این مقایسه را توضیح دهید.	

